Sains Malaysiana 53(1)(2024): 11-21
http://doi.org/10.17576/jsm-2024-5301-02
The Viability and Potential of Environmental
DNA (eDNA) Detection of Freshwater Fish Based on Current Genetic Resources in Malaysia
(Daya Maju dan Potensi Pengesanan DNA Persekitaran Ikan Air Tawar Berdasarkan Sumber Genetik Terkini di Malaysia)
KAVIARASU MUNIAN1,2, FARAH FARHANA RAMLI1,
NURSYUHADA OTHMAN1, HIDAYAH HARIS1, NUR HARTINI SARIYATI1,
NUR AINA AMIRA MAHYUDIN2, MOHD FAUDZIR NAJMUDDIN1, MOHD
SHAHFIZ AZMAN2 & MUHAMMAD ABU BAKAR ABDUL-LATIFF1,*
1Environmental
Management and Conservation Research Unit (eNCORe),
Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), 84600 Muar, Johor, Malaysia
2Zoology
Branch, Forest Biodiversity Division, Forest Research Institute Malaysia
(FRIM), 52019 Kepong, Selangor, Malaysia
Diserahkan: 26 Jun
2022/Diterima: 12 Disember 2023
Abstract
Environmental DNA (eDNA) metabarcoding is a
promising tool for regular biological monitoring, especially for freshwater
fish, which are facing tremendous threats worldwide. The application of eDNA detection is a dramatic improvement on common methods
of biomonitoring as it produces tangible results in a short time with low
effort and little expense. However, the accuracy of the technique is largely
dependent on the availability of genetic references for the target organisms.
In this study, we investigated the availability of genetic resources for
freshwater fish in Malaysia in three public depositories, National Center for
Biotechnology Information (NCBI), Barcode of Life Data System (BOLD), and Mitochondrial
Genome Database of Fish (MitoFish), focusing on seven targeted genes of mitochondrial DNA.
We found that only 68.6% of freshwater fish found in Malaysia had information
on at least one of the seven targeted genes, with data on Cytochrome C Oxidase
Subunit I being most commonly available. Genetic information for threatened and
endemic species were underrepresented (33.3%-41.7%), yet fish of commercial
value and invasive species were well explored genetically. Although there is
still room for improvement to achieve comprehensive and reliable genetic
resource information for freshwater fish in Malaysia, the application of eDNA metabarcoding is still
highly relevant. This is since the current decline in freshwater fish diversity
in Malaysia is alarming and because the technique will assist in the ongoing
effort to generate new genetic references for Malaysian freshwater fish.
Keywords: Environmental DNA; Cytochrome b; Cytochrome C Oxidase
Subunit I;
freshwater fish; metabarcoding and Next-Generation Sequencing (NGS)
Abstrak
Metabarkod DNA persekitaran (eDNA) ialah kaedah yang berpotensi dalam memantau sumber biologi terutamanya dalam pemantauan ikan air tawar terancam di seluruh dunia. Penggunaan teknik eDNA dalam pemantauan sumber biologi merupakan kaedah beteknologi tinggi kerana ia mampu memberikan hasil yang ketara dalam masa yang singkat dengan penggunaan tenaga dan kos yang minimum. Walau bagaimanapun, ketepatan teknik ini sebahagian besarnya bergantung kepada ketersediaan rujukan genetik untuk organisma yang disasar. Dalam penyelidikan ini, kami mengkaji ketersediaan sumber genetik untuk ikan air tawar di Malaysia di tiga depositori awam, iaitu Pusat Maklumat Bioteknologi Kebangsaan, Sistem Data Kehidupan Kod Bar dan Pangkalan Data Genom Mitokondria Ikan dan memfokuskan kepada tujuh gen DNA mitokondria yang terpilih. Hasil keputusan kami menunjukkan hanya 68.6% daripada ikan air tawar yang ditemui di Malaysia mempunyai maklumat tentang sekurang-kurangnya satu daripada tujuh gen yang disasarkan, manakala gen subunit Sitokrom C Oksidase Subunit I merupakan gen yang paling tersedia untuk digunakan. Keputusan kami juga menunjukkan maklumat tentang genetik spesies terancam dan endemik masih kurang dikaji (33.3%-41.7%), tetapi ikan air tawar komersial dan spesies ikan invasif telah dikaji dengan lebih baik dari aspek genetik. Fenomenon penurunan kepelbagaian ikan air tawar di Malaysia yang membimbangkan pada masa kini memberikan kewajaran kepada pelaksanaan aplikasi metabarkod eDNA untuk kajian ikan air tawar. Walaupun masih terdapat ruang penambahbaikan untuk mencapai maklumat sumber genetik yang komprehensif dan boleh dipercayai di Malaysia, aplikasi metabarkod (eDNA) ini wajar diteruskan sebagai sebahagian usaha berterusan para pengkaji dalam menjana rujukan genetik baharu untuk ikan air tawar Malaysia.
Kata kunci: DNA persekitaran; ikan air tawar; metabarkod dan penjujuran generasi hadapan (NGS); sitokrom b; Sitokrom Oksidase Subumit I
RUJUKAN
Allan, J.D. & Flecker, A.S. 1993. Biodiversity conservation in running
waters. BioScience 43(1): 32-43.
Allentoft, M.E., Collins, M., Harker, D., Haile, J., Oskam, C.L., Hale, M.L., Campos, P.F., Samaniego,
J.A., Gilbert, M.T.P., Willerslev, E. & Zhang, G.
2012. The half-life of DNA in bone: Measuring decay kinetics in 158 dated
fossils. Proceedings of the Royal Society B: Biological Sciences 279(1748):
4724-4733.
Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp,
M., Douglas, W.Y. & De Bruyn, M. 2014. Environmental
DNA for wildlife biology and biodiversity monitoring. Trends in Ecology
& Evolution 29(6): 358-367.
Centre for
Biodiversity Genomics, Canada. 2021. Barcode of Life Data System. Bold
Systems. https://www.boldsystems.org/
Accessed 10 August 2021.
Chen, C., Li, Q., Fu,
R., Wang, J., Xiong, C., Fan, Z., Hu, R., Zhang, H.
& Lu, D. 2019. Characterization of the mitochondrial genome of the
pathogenic fungus Scytalidium auriculariicola (Leotiomycetes)
and insights into its phylogenetics. Scientific
Reports 9: 17447.
Chong, V.C., Lee,
P.K.Y. & Lau, C.M. 2010. Diversity, extinction risk and conservation of
Malaysian fishes. Journal of Fish Biology 76(9): 2009-2066.
Coleman, C.O. 2015.
Taxonomy in times of the taxonomic impediment–examples from the community of
experts on amphipod crustaceans. Journal of Crustacean Biology 35(6):
729-740.
Darling, J.A. &
Mahon, A.R. 2011. From molecules to management: Adopting DNA-based methods for
monitoring biological invasions in aquatic environments. Environmental
Research 111(7): 978-988.
de Carvalho,
C.B.V. 2014. DNA barcoding in forensic vertebrate species identification. Brazilian
Journal of Forensic Sciences, Medical Law and Bioethics 4(1): 12-23.
De Moor, F.C. 1996.
The importance of voucher specimens. Southern African Journal of
Aquatic Science 22(1-2): 117-118.
Deagle, B.E., Jarman,
S.N., Coissac, E., Pompanon,
F. & Taberlet, P. 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biology
Letters 10(9): 20140562.
Deiner, K., Bik, H.M., Mächler,
E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D.M., de Vere, N. & Pfrender, M.E. 2017. Environmental DNA metabarcoding:
Transforming how we survey animal and plant communities. Molecular
Ecology 26(21): 5872-5895.
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard,
A.H., Soto, D., Stiassny, M.L. & Sullivan, C.A.
2006. Freshwater biodiversity: Importance, threats, status and conservation
challenges. Biological Reviews 81(2): 163-182.
Ficetola, G.F., Miaud, C., Pompanon, F. & Taberlet, P.
2008. Species detection using environmental DNA from water samples. Biology
Letters 4(4): 423-425.
Froese, R. & Pauly, D. 2017. FishBase. www.fishbase.org
Accessed 10 August 2021.
Gehri, R.R., Larson, W.A., Gruenthal,
K., Sard, N.M. & Shi, Y. 2021. eDNA metabarcoding outperforms
traditional fisheries sampling and reveals fine‐scale heterogeneity in a
temperate freshwater lake. Environmental DNA 3(5): 912-929.
Hebert, P.D., Ratnasingham, S. & De Waard,
J.R. 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences
among closely related species. Proceedings of the Royal Society of
London. Series B: Biological Sciences 270(suppl_1): S96-S99.
Jackson, J.B., Kirby,
M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R.H., Cooke, R., Erlandson, J., Estes, J.A. & Hughes, T.P. 2001.
Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):
629-637.
Jarman, S.N., McInnes,
J.C., Faux, C., Polanowski, A.M., Marthick,
J., Deagle, B.E., Southwell, C. & Emmerson, L.
2013. Adélie penguin population diet monitoring by
analysis of food DNA in scats. PLoS ONE 8(12): e82227.
Kartzinel, T.R., Chen, P.A., Coverdale, T.C., Erickson,
D.L., Kress, W.J., Kuzmina, M.L., Rubenstein, D.I., Wang, W. & Pringle,
R.M. 2015. DNA metabarcoding illuminates dietary
niche partitioning by African large herbivores. Proceedings of the
National Academy of Sciences 112(26): 8019-8024.
Kottelat, M. 2013. The fishes of the inland waters of
Southeast Asia: A catalogue and core bibliography of the fishes known to occur
in freshwaters, mangroves and estuaries. Raffles Bulletin of Zoology 2013(Supplement No. 27): 1-663.
Kounosu, A., Murase, K.,
Yoshida, A., Maruyama, H. & Kikuchi, T. 2019. Improved 18S and 28S rDNA
primer sets for NGS-based parasite detection. Scientific Reports 9(1):
1-12.
Liu, H., Li, H., Song,
F., Gu, W., Feng, J., Cai,
W. & Shao, R. 2017. Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips, Anaphothrips obscurus. Scientific
Reports 7: 4284.
Liu, J., Jiang, J.,
Song, S., Tornabene, L., Chabarria,
R., Naylor, G.J. & Li, C. 2017. Multilocus DNA
barcoding–species identification with multilocus data. Scientific Reports 7: 16601.
Lundberg, J.G., Kottelat, M., Smith, G.R., Stiassny,
M.L. & Gill, A.C. 2000. So many fishes, so little time: An overview of
recent ichthyological discovery in continental
waters. Annals of the Missouri Botanical Garden 87(1): 26-62.
Ma, X., Yang, H., Zhong, X., Zeng, P., Zhou, X., Zeng, S., Dong, X., Min, W.
& Huang, F. 2022. eDNA metabarcoding analysis of the composition and spatial patterns of fish communities in the Sanbanxi Reservoir, China. Sustainability 14(20):
12966.
McElroy, M.E.,
Dressler, T.L., Titcomb, G.C., Wilson, E.A., Deiner, K., Dudley, T.L., Eliason,
E.J., Evans, N.T., Gaines, S.D., Lafferty, K.D. & Lamberti,
G.A. 2020. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Frontiers
in Ecology and Evolution 8: 276.
McInnes, J.C. 2017. The development and
application of DNA metabarcoding to non-invasively
assess seabird diets, using albatrosses as a model. Doctoral
dissertation, University of Tasmania (Unpublished).
MitoFish: Mitochondrial Genome Database of Fish. 2021. MitoFish. http://mitofish.aori.u-tokyo.ac.jp/
accessed on 10 August 2021.
Milhau, T., Valentini, A., Poulet, N., Roset, N.,
Jean, P., Gaboriaud, C. & Dejean,
T. 2021. Seasonal dynamics of riverine fish communities using eDNA. Journal of Fish Biology 98(2): 387-398.
Naiman, R.J., Magnuson, J.J., Stanford, J.A. &
McKnight, D.M. 1995. The Freshwater Imperative: A Research Agenda.
Covelo: Island Press. p. 200.
Nakagawa, H.,
Yamamoto, S., Sato, Y., Sado, T., Minamoto, T. &
Miya, M. 2018. Comparing local‐and regional‐scale estimations of
the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshwater
Biology 63(6): 569-580.
National Library of
Medicine (US), National Center for Biotechnology
Information. National Center for Biotechnology
Information (NCBI). https://www.ncbi.nlm.nih.gov/ Accessed on 10 August 2021.
Ng, C.K.C., Abdullah,
F., Biun, H., Ibrahim, M.K., Mustapha, S. & Sade,
A. 2017. A working checklist of the freshwater fish diversity for habitat
management and conservation work in Sabah, Malaysia, North Borneo. Biodiversitas Journal of Biological Diversity 18(2): 560-574.
Othman, N., Haris, H., Fatin, Z., Najmuddin, M.F., Sariyati, N.H., Md-Zain, B.M. & Abdul-Latiff,
M.A.B. 2021. A review on environmental DNA (eDNA) metabarcoding markers for wildlife monitoring research. IOP
Conference Series: Earth and Environmental Science 736(1): 012054.
Pentinsaari, M., Salmela,
H., Mutanen, M. & Roslin, T. 2016. Molecular evolution of a widely-adopted taxonomic
marker (COI) across the animal tree of life. Scientific Reports 6:
35275.
Revenga, C., Campbell, I., Abell,
R., De Villiers, P. & Bryer, M., 2005. Prospects
for monitoring freshwater ecosystems towards the 2010 targets. Philosophical
Transactions of the Royal Society B: Biological Sciences 360(1454):
397-413.
Roberts, T.R. 1999.
Fishes of the cyprinid genus Tor in the Nam Theun watershed (Mekong basin) of Laos, with description of a new species. Raffles
Bulletin of Zoology 47: 225-236.
Saba, A.O., Ismail, A., Zulkifli,
S.Z., Halim, M.R.A., Wahid, N.A.A. & Amal, M.N.A.
2020. Species composition and invasion risks of alien ornamental freshwater
fishes from pet stores in Klang Valley,
Malaysia. Scientific Reports 10: 17205.
Sala, O.E., Stuart
Chapin, F.I.I.I., Armesto, J.J., Berlow,
E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F.,
Jackson, R.B., Kinzig, A. & Leemans,
R. 2000. Global biodiversity scenarios for the year 2100. Science 287(5459):
1770-1774.
Sanger, F., Nicklen,
S. & Coulson, A.R. 1977. DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences 74(12):
5463-5467.
Schnell, I.B.,
Thomsen, P.F., Wilkinson, N., Rasmussen, M., Jensen, L.R., Willerslev,
E., Bertelsen, M.F. & Gilbert, M.T.P. 2012.
Screening mammal biodiversity using DNA from leeches. Current Biology 22(8):
R262-R263.
Schwarz, C., Debruyne, R., Kuch, M., McNally,
E., Schwarcz, H., Aubrey, A.D., Bada,
J. & Poinar, H. 2009. New insights from old
bones: DNA preservation and degradation in permafrost preserved mammoth
remains. Nucleic Acids Research 37(10): 3215-3229.
Shaw, J.L., Clarke,
L.J., Wedderburn, S.D., Barnes, T.C., Weyrich, L.S. & Cooper, A. 2016. Comparison of
environmental DNA metabarcoding and conventional fish
survey methods in a river system. Biological Conservation 197:
131-138.
Singh, M.P., Janso, J.E. & Brady, S.F. 2007. Cytoskyrins and cytosporones produced by Cytospora sp. CR200: Taxonomy, fermentation and biological activities. Marine
Drugs 5(3): 71-84.
Stoeckle, M.Y., Das Mishu,
M. & Charlop-Powers, Z. 2020. Improved
environmental DNA reference library detects overlooked marine fishes in New
Jersey, United States. Frontiers in Marine Science https://doi.org/10.3389/fmars.2020.00226
Tarkan, A.S., Marr, S.M. & Ekmekçi,
F.G. 2015. Non-native and translocated freshwater fish. FiSHMED Fishes in Mediterranean Environments 3:
1-28.
Tedesco, P.A., Beauchard, O., Bigorne, R.,
Blanchet, S., Buisson, L., Conti, L., Cornu, J.F.,
Dias, M.S., Grenouillet, G., Hugueny,
B. & Jézéquel, C. 2017. A global database on
freshwater fish species occurrence in drainage basins. Scientific Data 4:
170141.
Waldron, A., Mooers, A.O., Miller, D.C., Nibbelink,
N., Redding, D., Kuhn, T.S., Roberts, J.T. & Gittleman,
J.L. 2013. Targeting global conservation funding to limit immediate
biodiversity declines. Proceedings of the National Academy of Sciences 110(29):
12144-12148.
Wang, J., Zhang, L.I.,
Zhang, Q.L., Zhou, M.Q., Wang, X.T., Yang, X.Z. & Yuan, M.L. 2017.
Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding
markers. PeerJ 5: e3661.
*Pengarang untuk surat-menyurat; email:
latiff@uthm.edu.my
|